Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 66(6): 977-989, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486095

RESUMO

Newcastle disease virus (NDV) causes huge economic loss to the poultry industry due to high mortality and morbidity. The present study aimed to assess the protective role of novel phosphorylated analogue ABC-1 in vivo in NDV-infected chickens through the inhibition of fusion protein. Both NDV-induced oxidative damage and protective role of novel phosphorylated ABC-1 were evaluated in vital organs such as the liver and lung of chickens. Enzyme linked immunosorbent assay (ELISA) results showed that protein oxidation and nitration levels were significantly raised in NDV-infected tissues compared to healthy controls, whereas these levels were reduced significantly (P < 0.05) in birds treated with phosphorylated compounds compared to the NDV-infected group alone. Additional investigation with double immunofluorescence showed that the large amount of immuno colocalization and Western blot analysis also confirmed this observation through its band pattern in NDV-infected birds compared to healthy birds, whereas these alterations were reduced in treatment with novel phosphorylated ABC-1. The expression of fusion glycoprotein was studied by immuno colocalization, PCR, and flow cytometry, and results demonstrated that the novel phosphorylated analogues reduced the expression of fusion glycoprotein. These results put forth that novel phosphorylated ABC-1 protects chickens from NDV-induced pathogenesis, protein oxidation/nitration, and exerts potent antiviral activity.


Assuntos
Fármacos Anti-HIV/farmacologia , Didesoxinucleosídeos/farmacologia , Vírus da Doença de Newcastle/efeitos dos fármacos , Animais , Galinhas , Testes de Sensibilidade Microbiana , Fosforilação
2.
Cell Death Dis ; 9(7): 754, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988028

RESUMO

Mesenchymal stem cells (MSCs) function as progenitors to a variety of cell types. The reported association between osteogenic and adipogenic commitment during differentiation is due to the regulation of key transcription factors in the signaling pathways. However, the process of adipogenesis at the expense of osteogenic phenotype during metabolic stress is still unclear. In this study, we showed for the first time that RUNX2 is a novel substrate of AMP-activated kinase (AMPK), which directly phosphorylates at serine 118 residue in the DNA-binding domain of RUNX2. Our results in in vitro MSC lineage differentiation models confirmed that active AMPK and RUNX2-S118 phosphorylation are preferentially associated with osteogenic commitment, whereas the lack of this phosphorylation leads to adipogenesis. This interplay is regulated by the ubiquitination of non-phosphorylated RUNX2-S118, which is evident in the dominant mutant RUNX2-S118D. Pharmacological activation of AMPK by metformin significantly abrogated the loss of RUNX2-S118 phosphorylation and protected from tunicamycin-induced endoplasmic reticulum stress, high glucose-induced in vitro adipogenesis and streptozotocin-induced in vivo bone adiposity and bone phenotype. In conclusion, results from this study demonstrated that RUNX2 is a direct target of AMPK which simplified the outlook towards several complex mechanisms that are currently established concerning cellular metabolism and pathogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteogênese/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Adipogenia/genética , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Citometria de Fluxo , Humanos , Osteogênese/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
3.
Asian J Pharm Sci ; 13(1): 91-100, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32104382

RESUMO

Dry powder inhaler Liposomes were prepared to investigate the effectiveness of pulmonary delivery of Colchicine and Budesonide for Idiopathic Pulmonary fibrosis. Budesonide (BUD) and Colchicine (COL) liposomes were prepared by thin layer film hydration method (TFH) using 1,2-Dipalmitoyl-sn-glycero-3- phosphoglycerol sodium (DPPG), Hydrogenated Soyaphosphotidylcholine (HSPC), Soyaphosphatidylcholine (SPC), cholesterol (CHOL) and drug in different weight ratios. The optimum lipid composition for BUD (74.22 ± 0.97%) was DPPG: HSPC: CHOL (4:5:1) and for COL (50.94 ± 2.04%) was DPPG: SPC: CHOL (3:6:1). These compositions retained drug for a longer period of time so selected for further study. Liposomes were found to be spherical in shape with mean size below 100 nm. Liposomes lyophilized using Mannitol as carrier and cryoprotectant showed high entrapment efficiency (97.89 - 98.6%). The powder was dispersed through an Andersen cascade impactor to evaluate the performance of the aerosolized powder. It was found that prepared liposomal dry powder inhaler (DPIs) sustained the drug release up to 24 hours. Optimized Budesonide DPI Formulation B2 (86.53 ± 1.9%), Colchicine DPI Formulation C2 (90.54 ± 2.3 %) and BUD and COL DPI Combination M2 (89.91 ± 1.8%, 91.23 ± 1.9%). Histopathological results, measurements of lung hydroxyproline content, Myeloperoxidase activity indicated that liposomal dry powder inhaler administration attenuates lung fibrosis induced by bleomycin. Long term stability studies indicated that lyophilised BUD and COL liposomes were stable for 6 months at (25 °C ± 2 °C, 60% ± 5% RH) and refrigerated conditions (2 - 8 °C). These results supported that combination of budesonide and colchicine liposomal dry powder inhaler pulmonary drug delivery for treatment of idiopathic Pulmonary Fibrosis exhibits prolonged drug retention at targeted site and reduces the systemic exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...